
Data Tools in R
Emily Riederer

emilyriederer@gmail.com
@emilyriederer

mailto:emilyriederer@gmail.com


About Emily

UNC Chapel Hill (2012 - 2016)
B.S. Mathematics, Statistics & Analytics

US Card Analytics (2016 - Present)
Analyst to Senior Manager
Founded Data & Analytics Tooling team

Hobbies
#rstats Twitter (@emilyriederer)
Blogging at https://emilyriederer.netlify.app/
rOpenSci editor
CRC Press reviewer

R hackathon co-organizers, Feb 2019 

https://emilyriederer.netlify.app/


Data Analysis Tools Community

● Datamart design
● Data pipeline development
● Data quality
● Data discoverability

● Conceptual frameworks & 
R packages for common 
analytical tasks

● Spanning utilities, devtools, 
analysis

● Training
● Consulting / mentorship
● Hackathons

Bring reproducibility and extensibility to business analysis





My career path is predicated on very poor assumptions

High School

University

Industry

Math

Statistical Modeling

Data Science / Analytics

Expectation

Apply the same rigor and certainty 
as math to “human” problems

Apply rich statistical methods to 
make decisions and find “insights”

Reality

Art more than science

Data, infrastructure, context



My career path gave me an eclectic set of ideas that proved quite useful

High School

University

Industry

Math

Statistical Modeling

Data Science / Analytics

● Rigor and precision in defining abstractions
● Proving things (to myself!)
● Literacy to keep learning

● Toolbag of methods
● Distribution thinking
● Unbridled fury at bad workflows

● Working with technology
● Exciting others about new, niche ideas



Key career realizations

1. R Markdown is the gateway to more powerful tools

2. Good workflows provide an incredible amount of leverage

3. Packages are more than functions on CRAN

4. Packages can play many roles in an organization



Key career realizations

1. R Markdown is the gateway to more powerful tools

2. Good workflows provide an incredible amount of leverage

3. Packages are more than functions on CRAN

4. Packages can play many roles in an organization

R Markdown Driven 
Development

R Packages in 
Organizations



Beyond R Markdown’s polished outputs, it’s also a powerful prototyping platform

---
title: “My Analysis"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```

```{r pkg-load}
library(dplyr)
library(tidyr)
library(survival)
library(ggfortify)
```

```{r data-load}
outcomes_df <- readr::read_csv(‘outcomes.csv’)
```

## Introduction

In this analysis, we report the…

```{r all-the-good-code}

Websites

Dashboards Analysis Reports

Slides

pkgdown xaringan

flexdashboard
plotly + crosstalk

knitr
rmarkdown



Each analysis depends on a latent tool custom-fit to your domain-specific workflow

---
title: “My Analysis"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```

```{r pkg-load}
library(dplyr)
library(tidyr)
library(survival)
library(ggfortify)
```

```{r data-load}
outcomes_df <- readr::read_csv(‘outcomes.csv’)
```

## Introduction

In this analysis, we report the…

```{r all-the-good-code}

library(myperfectpackage)

---
title: “My Analysis"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```

```{r pkg-load}
library(dplyr)
library(tidyr)
library(survival)
library(ggfortify)
```

```{r data-load}
outcomes_df <- readr::read_csv(‘outcomes.csv’)
```

## Introduction

In this analysis, we report the…

```{r all-the-good-code}



This implicit analysis tool already contains core development and design components

Development

• Curated set of related libraries
• Working and “tested” code



This implicit analysis tool already contains core development and design components

Development

• Curated set of related libraries
• Working and “tested” code

Design

• Comprehensive understanding of user (producer & 
consumer) requirements

• Sane workflow 
• Complete & compelling example 



RMarkdown Driven Development (RmdDD) has five main steps

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



RmdDD has multiple endpoints, so you can take the right exit ramp for your destination

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Low Quality High Quality

Bad Person Good Person

Worse UX Better UX

X

X

X
Specific 
Instance

Generic Class

File Project Package



Eliminate clutter to make your own code more trustworthy for its initial use

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



Parameters can protect the integrity of your analysis and your credentials 

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

---
title: “My Analysis"
output: html_document
---

{{package loads, data loads, etc.}}

```{r}
data_lastyr <- data %>%
  filter(between(date, ‘2018-01-01’, ‘2018-12-31’))
```

---
title: “My Analysis"
output: html_document
params:
  start: ‘2018-01-01’
  end: ‘2018-12-31’
---

{{package loads, data loads, etc.}}

```{r}
data_lastyr <- data %>%
  filter(between(date, params$start, params$end))
```



Parameters can protect the integrity of your analysis and your credentials 

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

---
title: “My Analysis"
output: html_document
params:
  username: emily
  password: x
---

{{package loads, data loads, etc.}}

```{r}
con <- 
  connect_to_database(
    username = params$username,
    password = params$password
  )
```

RStudio: Knit > Knit with 
Parameters…



Local file paths nearly guarantee that your project will not work on someone else’s machine 

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

data <- readRDS(‘C:\Users\me\Desktop\my-project\data\my-data.rds’)

data <- readRDS(‘data\my-data.rds’)

data <- readRDS(here::here(‘data’, ‘my-data.rds’)) here

Not resilient to any file structure change:

Resilient to movement of working directory:

Resilient to movement of Rmd within working directory or across OS: 



Don’t let your script become a junk drawer

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

X Unused package loads

X Unsuccessful coding experiments



RMarkdown is (too) good at capturing our non-linear thought processes

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



Clustering quantitative and narrative components makes both easier to iterate on

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Infrastructure & 
Computing to the top

Communication & 
Narration to the bottom

• Clear dependencies
• Frontloaded errors

• Consolidated story
• Easier for non-coder to contribute

• Increased likelihood of noticing 
repeated code 



Enhance the navigability of your file in RStudio with chunk names and special comments

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Expandable TOC allows you to 
jump to your Markdown headers (#)

Comments followed by four dashes 
create expand/contract button in 
margin and bookmark on nav bar

Named chunks create 
bookmark on nav bar and 
encourage semantically 
grouped chunks



Writing functions eliminates duplication and increases code readability

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



Writing functions eliminates duplication and increases code readability

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

## Exploratory Analysis

```{r}
ggplot(data, aes(x,y)) + geom_point()
```
```{r}
ggplot(data, aes(x,z)) + geom_point()
```
```{r}
ggplot(data, aes(x,w)) + geom_point()
```

```{r fx-viz-scatter-x}

viz_scatter_x <- function(data, vbl) {
  ggplot(
    data = data, 
    mapping = aes(x = x, y = {{vbl}}) +
  geom_point()
}

```

## Exploratory Analysis

```{r viz-scatter-x }
viz_scatter_x(data, y)
viz_scatter_x(data, z)
viz_scatter_x(data, w)
```



roxygen2  function documentation can give your script a package-like understandability

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

```{r fx-viz-scatter-x}

#’ Scatterplot of variable versus x 
#'
#' @param data Dataset to plot. Must contain variable named x
#' @param vbl Name of variable to plot on y axis
#'
#' @return ggplot2 object
#’ @import ggplot2
#' @export

viz_scatter_x <- function(data, vbl) {
  ggplot(
    data = data, 
    mapping = aes(x = x, y = {{vbl}}) +
  geom_point()
}

```

RStudio: Ctrl + Alt + Shift + R for skeleton



Get a virtual second pair of eyes on your polished single-file RMarkdown

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Automatically find areas of improvement with lintr, styler, and 
spelling

            Analyses code and points out potential style violations

                 Automatically reformats code with built-in style guides

              
                         Highlight typos in code 

> lintr::lint(‘customer-profile.Rmd’)

styler

lintr

spelling



A polished single-file RMarkdown can be a very practical end-state for maximum portability

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

File

Standalone File

Benefits Pitfalls

• Portable without formal repository
• Easy to compare versions with diffs without formal 

version control
• One-push execution / refresh

• Can be lengthy, monolithic, and intimidating
• Potentially slow to run and relies on RMarkdown to 

play role of job scheduler 
• Enables antipatterns (e.g. not saving artifacts)



Projects modularize components and make it easy to access individual project assets

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



```{r fx-viz-scatter-x}
#’ Scatterplot of variable versus x 
#'
#' @param data Dataset to plot. Must contain variable named x
#' @param vbl Name of variable to plot on y axis
#'
#' @return ggplot2 object
#’ @import ggplot2
#' @export
viz_scatter_x <- function(data, vbl) {
  ggplot(
    data = data, 
    mapping = aes(x = x, y = {{vbl}}) +
  geom_point()
}
```
## Exploratory Analysis

```{r viz-scatter-x }
viz_scatter_x(data, y)
viz_scatter_x(data, z)
viz_scatter_x(data, w)
```

The source()function enables us to execute R code from another script

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

#’ Scatterplot of variable versus x 
#'
#' @param data Dataset to plot. Must contain variable named x
#' @param vbl Name of variable to plot on y axis
#'
#' @return ggplot2 object
#’ @import ggplot2
#' @export
viz_scatter_x <- function(data, vbl) {
  ggplot(
    data = data, 
    mapping = aes(x = x, y = {{vbl}}) +
  geom_point()
}

```{r load-fx}
source(here(‘src’, ‘viz-scatter-x.R’))
```
## Exploratory Analysis

```{r viz-scatter-x }
viz_scatter_x(data, y)
viz_scatter_x(data, z)
viz_scatter_x(data, w)
```



Pre-processing data decreases external system dependencies and knitting time 

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

src

src
data

output

Load data outside of Rmd to eliminate dependence on API, 
Database, etc. being ‘up’ when need to knit

Store ‘raw’ data for posterity and reproducibility

Store analytical artifacts (e.g. lean models, aggregate data) to 
read in to final report



R projects preserve problem-specific context while making it easy to reapply components

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Project

Project

Benefits Pitfalls

• Flexible to extract small proportion of functionality or 
modify at will

• Preserves problem-specific context (when desirable)

• The line between analysis and code may be unclear
• Can’t make full use of developer tools



There is a near one-to-one mapping between the components of a project and a package

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package



Developer tools exist to help us create everything we need – and more!

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

Package
Sets up all of the folders and configuration files to 

ensure your package assets are put in the right place

Autogenerates documentation (man/ folder) from your 
roxygen2 function comments

Provides high level interface for writing and running 
unit tests

Renders a polished, user-friendly website from 
package metadata 

tiny
test



Different stopping points optimize for recreation versus extension of your work

Standalone File

Project

Package

Benefits Pitfalls

• Portable without formal repository
• Easy to compare versions with diffs without 

formal version control
• One-push execution / refresh

• Can be lengthy, monolithic, and intimidating
• Potentially slow to run and relies on 

RMarkdown to play role of job scheduler 
• Enables antipatterns (e.g. not saving artifacts)

• Flexible to extract small proportion of 
functionality or modify at will

• Preserves problem-specific context (when 
desirable)

• The line between analysis and code may be 
unclear

• Can’t make full use of developer tools

• Formal mechanisms for distributing at scale 
(e.g. CRAN)

• Familiar format for others to learn and use

• May be too narrowly focused and inflexible if 
built towards specific project

• Potentially more challenging to extract specific 
features from for interactive use

Specific 
Instance

Generic 
Class



No matter what path you chose, your RMarkdown analysis is closer to a sustainable and 
empathetic data product than you may think!

Removing 
troublesome 
components

Rearranging 
chunks

Reducing 
duplication with 

functions

Migrating 
RMarkdown to 

project

Converting project 
to a package

File Project Package



Key career realizations

1. R Markdown is the gateway to more powerful tools

2. Good workflows provide an incredible amount of leverage

3. Packages are more than functions on CRAN

4. Packages can play many roles in an organization

R Markdown Driven 
Development

R Packages in 
Organizations





data access
server connection
proxies, ssh, ssl

right problems
tribal knowledge

intuition

team norms
meetings

communication



data access
server connection
proxies, ssh, ssl

right problems
tribal knowledge

intuition

team norms
meetings

communication



AbstractSpecific Problem Definition

Internal 
Packages

Open Source 
Packages



AbstractSpecific Problem Definition

So
lut

ion
 Br

ea
dth

Workflow

Task

Internal 
Packages

Open Source 
Packages



utilities packages analysis packages developer tools
data access

server connection
proxies, ssh, ssl

right problems
tribal knowledge

intuition

team norms
meetings

communication
e.g. abstraction layer for 

infrastructure
e.g. curated workflow, tailored 

function calls, automated 
result generation

e.g. color palettes, Shiny 
modules, linters, git hooks 



The IT Guy

functional handle quirks of infrastructure

social promote or enforce good practices

emotional avoid frustration or stress of time lost



The IT Guy

functional handle quirks of infrastructure -> utility functions

social promote or enforce good practices -> opinionated design

emotional avoid frustration or stress of time lost -> helpful error messages



get_database_conn <- function(username, password) {

conn <-
  DBI::dbConnect(
    drv = odbc::odbc(),

driver = {driver name},
server = {server},
UID = username,
PWD = password,
port = {port number} 

  )

return(conn)

}



get_database_conn <- function(username, password) {

conn <-
  DBI::dbConnect(
    drv = odbc::odbc(),

driver = {driver name},
server = {server},
UID = Sys.getenv(“DB_USER”) username,
PWD = Sys.getenv(“DB_PASS”) password,
port = {port number} 

  )

return(conn)

}



get_database_conn <- function() {

if (any(Sys.getenv(c(“DB_USER”, “DB_PASS”)) == “”)) {
  stop(
    “DB_USER or DB_PASS environment variables are missing.”,
    “Please read set-up vignette to configure your system.”
  ) 
}

conn <-
  DBI::dbConnect(
    drv = odbc::odbc(),

driver = {driver name},
server = {server},
UID = Sys.getenv(“DB_USER”),
PWD = Sys.getenv(“DB_PASS”),
port = {port number} 

  )

return(conn)

}



get_database_conn <- function() {

if (any(Sys.getenv(c(“DB_USER”, “DB_PASS”)) == “”)) {
  stop(
    “DB_USER or DB_PASS environment variables are missing.”,
    “Please read set-up vignette to configure your system.”
  ) 
}

conn <-
  DBI::dbConnect(
    drv = odbc::odbc(),

driver = {driver name},
server = {server},
UID = Sys.getenv(“DB_USER”),
PWD = URLencode(Sys.getenv(“DB_PASS”), reserved = TRUE),
port = {port number} 

  )

return(conn)

}



The Junior Analyst / Trainee

functional perform work with reasonable assumptions

social flexible to feedback, trying new things

emotional builds trust so you can focus on other things



The Junior Analyst / Trainee

functional perform work with reasonable assumptions

-> default arguments
-> reserved keywords
-> ellipsis

social flexible to feedback, trying new things

emotional builds trust so you can focus on other things



viz_cohort <- function(data, time, metric, group) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[time]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line() +
    my_org_theme()

  return(gg)

}



viz_cohort <- function(data, time, metric, group) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[“MONTHS_SUBSCRIBED”]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line() +
    my_org_theme()

  return(gg)

}



viz_cohort <- function(data, 
                       metric = “IND_ACTIVE”,
                       time = “MONTHS_SUBSCRIBED”, 
                       group = “COHORT”) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[time]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line() +
    my_org_theme()

  return(gg)

}



viz_cohort <- function(data, 
                       metric = “IND_ACTIVE”,
                       time = “MONTHS_SUBSCRIBED”, 
                       group = “COHORT”) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[time]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line() +
    my_org_theme()

  return(gg)

}
Reserved Keywords:

TIME_SUBSCRIBED
CUSTOMER_COHORT
CUSTOMER_SEGMENT
...



viz_cohort <- function(data, 
                       time = “MONTHS_SUBSCRIBED”, 
                       metric = “IND_ACTIVE”,
                       group = “COHORT”,
                       ...) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[time]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line(aes(...)) +
    my_org_theme()

  return(gg)

}



viz_cohort <- function(data, 
                       time = “MONTHS_SUBSCRIBED”, 
                       metric = “IND_ACTIVE”,
                       group = “COHORT”,
                       ...) {

  gg <- 
    ggplot(data) +
    aes(x = .data[[time]], 
        y = .data[[metric]],
        group = .data[[group]]) +
    geom_line(aes(...)) +
    my_org_theme()

  return(gg)

}

> viz_cohort(my_data)

> viz_cohort(my_data,
            color = COHORT,
            linetype = COHORT)



The Tech Lead / Principal Investigator

functional coach you through issues & alternatives

social share collected knowledge

emotional inspire you to do your best work



The Tech Lead / Principal Investigator

functional help navigate common issues & alternatives

-> vignettes 

-> templates
social share collected knowledge

emotional connect to latent community of practice



Vignettes as a time capsule for knowledge transfer

Method Overview
(survival)

Crash course
(dplyr)



Vignettes as a time capsule for knowledge transfer
Conceptual Overview

Workflow & Key Questions

Process Documentation



Vignettes as a time capsule for knowledge transfer
Conceptual Overview

Workflow & Key Questions

Process Documentation

Technical Overview

Methods Comparison



Vignettes as a time capsule for knowledge transfer
Conceptual Overview

Workflow & Key Questions

Process Documentation

Technical Overview

Lessons Learned

Past Examples

Methods Comparison



Expand your reach with pkgdown
> pkgdown::build_site()





Templates as coach

---
title: "Untitled"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
---

```{r setup, include=FALSE}
library(flexdashboard)
```

Column {data-width=650}
--------------------------------

### Chart A

```{r}

```

Column {data-width=350}
--------------------------------

### Chart B

```{r}

```

Structure 
(flexdashboard)



Templates as coach
---
title: "Data Validation"
output: html_document
---

## Censored Data

Run the following code to visualize how many 
observations were censored. Depending on what 
you find you will want to... 

```{r censored}

---
title: "Final Report"
output: html_document
params: 
  month: September
---

## Final Report

TODO: UPDATE COMMENTARY SUMMARIZING TRENDS

```{r dashboard}

Process walk-through

Analysis outline



Templates as code reviewer

scripts/

fun/

data/

analysis/

output/

sample-data.rds

data-pull.R



Collaboration

functional clear communication

social keeps promises

emotional confident yet engaged



Collaboration

functional clear communication

-> naming
-> dependencies
-> testing

social keeps promises

emotional confident yet engaged



Clear communication

data.frame

viz_*

prep_*

calc_*

tbl_*

ggplot

data.frame 
for a viz_*

data.frame

pivoted 
data.frame 
for DT



Dependency structures

A B

a_fx <- function() {...}

b_fx <- function() {
    ... 
    a_fx()
    ...
}

Direct Dependency



Dependency structures

A B

a_fx <- function() {...}

b_fx <- function() {
    ... 
    a_fx()
    ...
}

Direct Dependency



Dependency structures

A BA B

a_fx <- function() {...}a_fx <- function() {...}

b_fx <- function() {
    ... 
    a_fx()
    ...
}

b_fx <- function(a_input) {
    ... 
    do_something(a_input)
    ...
}

Clean Hand OffDirect Dependency



Dependency structures

A BA B

A B

a_fx <- function() {...}a_fx <- function() {...}

b_fx <- function() {
    ... 
    a_fx()
    ...
}

b_fx <- function() {
    ... 
    c_fx()
    ...
}

b_fx <- function() {
    ... 
    c_fx()
    ...
}b_fx <- function(a_input) {

    ... 
    do_something(a_input)
    ...
}

Clean Hand OffDirect Dependency Common Parent

C



Typical unit test with dependency

test_that(
  “Receives input correctly from a”, 
 {
  expect_error(fxb(fxa(1)), NA)
 }
)

b/tests/testthat/test-pkga.R

A

B



test_that(
  “Preps input correctly for b”, 
 {
  expect_error(fxb(fxa(1)), NA)
 }
)

Integration tests

test_that(
  “Receives input correctly from a”, 
 {
  expect_error(fxb(fxa(1)), NA)
 }
)

a/tests/testthat/test-pkgb.R b/tests/testthat/test-pkga.R



Key career realizations

1. R Markdown is the gateway to more powerful tools

2. Good workflows provide an incredible amount of leverage

3. Packages are more than functions on CRAN

4. Packages can play many roles in an organization



Building tools is an increasingly important skill in data science

Lead Data Scientist - Ecolab Principal Data Scientist - Starbucks

Data Scientist - Twitch Staff Data Scientist - Twitter

https://www.linkedin.com/jobs/view/2785107640
https://www.linkedin.com/jobs/view/2720079278
https://www.linkedin.com/jobs/view/2778697658
https://www.linkedin.com/jobs/view/2771470350


Big Ideas:

● Good Enough Practices in Scientific Computing
● Opinionated Analysis Development
● <<Anything from the R community with the word “workflow”>>

Applications:

● Understanding the InnerSource Checklist
● rOpenSci Packages: Development, Maintenance, and Peer Review
● How R Helps AirBnb Make the Most of Its Data

Inspirations

https://arxiv.org/abs/1609.00037
https://peerj.com/preprints/3210/
http://innersourcecommons.org/checklist/
https://devguide.ropensci.org/index.html
https://peerj.com/preprints/3182/

